### 1D model atmosphere CLV calculations Bertrand Plez LUPM, Université de Montpellier & CNRS



PLATO CLV workshop IAA-CSIC Granada 26-27/02-2019











#### Actually, it is a little more complicated

Emergent intensity:  $I_{\nu}^{+}(\tau_{\nu}=0,\mu) = \int_{0}^{\infty} S_{\nu}(t_{\nu}) e^{-t_{\nu}/\mu} dt_{\nu}/\mu.$ 

=> weighted average of source function along line of sight



Formally very simple, but S can depend on I at other depths (e.g., scattering)

### Plane-parallel atmosphere



### Spherically symetric atmosphere



### Importance of sphericity



Critical angle for which ray crosses atmosphere at  $\tau$ =1:  $\sin\theta_c = r_1/r_0$ 

$$\Rightarrow \mu_{c} = (1 - r_{1}/r_{0})^{1/2} \approx (2 \Delta r/r_{0})^{1/2}$$

Limb-darkening in the continuum

Stronger T-dependence of Planck function in the blue => stronger limb-darkening





#### Calculations

MARCS models + line lists + Turbospectrum

PP or SPH

continuum and line spectrum

spectral resolution > 100 000

*μ*=0.1, 0.2, ..., 1.0

### **MARCS 2008**

- Opacity Sampling (OS) 108000 points
- updated continuous opacities
- updated line opacities, e.g. H<sub>2</sub>O, atomic lines with Anstee, Barklem et al.'s collisional broadening, and better H I lines (Barklem & Piskunov, 2003), ...
- more than 10<sup>4</sup> models
- note on computing time :
  - Gustafsson & Nissen 1972 : 25mn for a PP model with 148  $\lambda$  (25 Balmer lines)
  - 2008 : 10mn for a SPH model with 108000  $\lambda$  (>10<sup>8</sup> lines)
  - NB: 2019: a few minutes on this laptop

### Sampling of opacities and fluxes



A sampled SED **is not** a high resolution spectrum smoothed to lower resolution !

#### MARCS Solar model: the flux spectrum









# The comparison to solar flux, although not perfect is quite good. This can probably be improved with better line lists.

We are working on it.

And now, a more difficult matter: intensities



 $\Rightarrow$  the thermal gradient of 1D models is too steep between  $\tau$ =1 and  $\tau$ =0.1

#### Fiddling with convection in 1D models could partially do the trick. But this is not the way we want to do it.



Jason P. Aufdenberg•25 July 2006•Michelson Summer Workshop•Pasadena

#### Recent observations of the solar CLV

Ramelli et al. 2017, arXiv 1708.03284 IRSOL (Locarno) Intensities at 10 angles: mu=0.1, 0.2, ..., 1.0 439 – 666 nm, full resolution Normalized to continuum AND divided by I/I<sub>cont</sub> at disk center

### Continuum-normalized intensity observations (black) vs MARCS models (red)





*The data for this analysis have been provided in electronic form by IRSOL as a compilation by Setzer et al. (2017)* 

### Continuum-normalized intensity observations (black) vs MARCS models (red)



*The data for this analysis have been provided in electronic form by IRSOL as a compilation by Setzer et al. (2017)* 



Setzer et al. (2017)

Recall, these observations were normalized to continuum AND divided by I/I<sub>cont</sub> at disk center

Ramelli et al. suggest using as best estimate for the absolute intensity:

**IRSOL** measurements  $I_{\mu}(\lambda) = R_{\mu}(\lambda) \cdot I_{\lambda}^{N}(\mu) \cdot I_{c}^{FTS}(\lambda)$ Neckel & Labs continuum CLV (1994)

Kurucz et al. disk center intensity (1984)

So, another way of looking at it:

scale observations using Neckel & Labs continuum CLV measurements



## Observations scaled using Neckel & Labs continuum CLV measurements



# Observations scaled using Neckel & Labs continuum CLV measurements



### Observations scaled using Neckel & Labs continuum CLV measurements



 $H\alpha$  requires a chromosphere and NLTE



Some conclusions, thoughts, and questions

- 1D models do not perform optimally for CLV. As is well known, CLV is a stringent test of the temperature gradient accuracy!
- 3D models perform better
- While 1D models are inexpensive, 3D models demand large ressources: only sparse grids can be computed
- $\Rightarrow$  map 3D CLVs on 1D counterparts and interpolate?
- ⇒ Or maybe Stagger grid is already sufficient to directly interpolate?
- Little reliable data exist to test our models, beyond the Sun.
  ⇒ Need more from interferometry, transits, binaries,...