

Stellar radii from interferometry

D. Mourard – OCA France

Outline

1. Basic considerations about radius, diameter, Teff

- 2. Rapid introduction to the interferometric measurements
- 3. Could we measure the angular diameter of stars, and the LD?
- 4. What is the current situation?

5. What are the perspectives? CHARA/SPICA project

Basic considerations

R = Radius (m, R_{θ}) θ_{LD} = Angular diameter (millisecond of arc == mas) *it should be understood as the LD diameter, not the equivalent Uniform Disk diameter* (θ_{UD}) *which is wavelength dependent.*

$$
R = \frac{\theta_{LD}}{9.305 \, \pi_p}
$$
 with R in R₀, θ_{LD} in mas and π_p the parallax in second of arc

Effective temperature

$$
\sigma {T_e}^4 = \frac{L}{4\pi R^2}
$$

Luminosity & Radius Bolometric fluc and angular diameter

$$
\sigma T_e^4 = \frac{4f_{bol}}{\theta^2}
$$
, with θ in radian

But apparent diameters are small…

1309 sources 50 % < 2.5 mas $20 \% > 5 \text{ mas}$ $7\% > 10$ mas -> UT

How to measure a so small angular diameter?

N.A.: θ =10mas, λ =1 μ m \rightarrow r_c= 13m

Coherence & Van-Cittert Zernike Theorem

Note: The definition of r_c (Goodman) corresponds at B where $\Gamma_{12}=0.5$ i.e. $\pi \theta B/\lambda = 2 \implies r_c = B = 2\lambda/\pi\theta \implies \epsilon = \lambda^2$.

Visibility function of a star θ_{UD} =1mas

Sensible to LD

Insensible to LD

Limb darkening & interferometry - 1st basic considerations

Mon. Not. R. astr. Soc. (1974) 167, 475-483.

THE EFFECTS OF LIMB DARKENING ON MEASUREMENTS OF ANGULAR SIZE WITH AN INTENSITY **INTERFEROMETER**

R. Hanbury Brown, J. Davis, R. J. W. Lake and R. J. Thompson

2. A SIMPLE REPRESENTATION OF LIMB DARKENING

In the conventional linear representation of limb darkening the distribution of brightness across the star's disc is given by,

$$
I_{\lambda}(\mu) = I_{\lambda}(1)[1 - u_{\lambda}(1 - \mu)] \tag{3}
$$

where $I_{\lambda}(\mu)$ is the brightness of a point on the disc at a wavelength λ , μ is the cosine of the angle between the normal to the surface at that point and the line of sight from the star to the observer, and u_{λ} is the limb-darkening coefficient. By taking the Hankel transform of the apparent angular distribution of intensity across the source it can be shown that.

$$
C_{\lambda}^{2}(d) = (\alpha/2 + \beta/3)^{-2} [\alpha J_{1}(x)/x + \beta(\pi/2)^{1/2} J_{3/2}(x)/x^{3/2}]^{2}
$$

where $\alpha = \overline{1 - u_{\lambda}}, \beta = u_{\lambda}, x = \pi \theta_{\text{LD}} d/\lambda_0, \theta_{\text{LD}}$ is the true angular diameter of the limb-darkened star, and it is assumed that $\Delta_{\lambda} = I$.

FIG. 3. The variation of correlation $\Delta_{\lambda} \Gamma_{\lambda}$ (d) with baseline d for Sirius. The points show the observed values; the full line is a theoretical curve, based on a model stellar atmosphere $(T_e =$ 10 000K, log g = 4), with zero-baseline correlation and angular size adjusted to give the best fit to the observations. The broken lines represent the rms uncertainty in the theoretical curves.

 (4)

Limb darkening & interferometry – "classical considerations"

Limb-darkening corrections for interferometric uniform disc stellar angular diameters

$$
\rho_\theta=\,\theta_\mathrm{LD}/\theta_\mathrm{UD}
$$

J. Davis,^{*} W. J. Tango and A. J. Booth^{\dagger} Mon. Not. R. Astron. Soc. 318, 387–392 (2000)

Measure of
$$
\theta_{\text{UD}}
$$
 + estimation of **U** the linear limb darkening coefficient (Te, logs) $\rightarrow \rho_{\theta} = \sqrt{\frac{1-\frac{u}{3}}{1-\frac{7u}{15}}} \rightarrow \theta_{\text{LD}}$

26/02/2019 PLATO Limb Darkening Meeting #1 - D. Mourard 9

Different definitions of Limb Darkening

From Kervella et al., A&A 597 (2017)

\n- – uniform disk:
\n- $$
I(\mu)/I(1) = 1;
$$
\n
	\n- (2)
	\n- – linear:
	\n- $I(\mu)/I(1) = 1 - u(1 - \mu);$ \n
	\n- – power law (Hestroffer 1997):
	\n- $I(\mu)/I(1) = \mu^{\alpha};$ \n
	\n- – quadratic:
	\n- $I(\mu)/I(1) = 1 - a(1 - \mu) - b(1 - \mu)^2;$ \n
	\n- – square root:
	\n- $I(\mu)/I(1) = 1 - c(1 - \mu) - d(1 - \sqrt{\mu});$ \n
	\n- – four-parameter:
	\n- $I(\mu)/I(1) = 1 - \sum_{k=1}^{4} a_k \left(1 - \mu^{k/2}\right).$ \n
	\n- In addition, we consider the following polynomial model with
	\n

six parameters:

- polynomial:

$$
I(\mu)/I(1) = \frac{\sum_{k=0}^{5} s_k \mu^k}{\sum_{k=0}^{5} s_k}.
$$
 (8)

Fig. 2. Comparison of different parametric limb darkening models of the Sun with the observed limb darkening profile measured by Pierce et al. (1977) in the H band. The residuals in percentage of the observed intensity profile are shown in the *lower panel*.

Actual measurements with VLTI/PIONIER

Fig. 3. Adjustment of a power law limb darkened disk model to the PIONIER squared visibilities of α Cen A (solid gray curve). The dashed gray curve represents the best-fit uniform disk model. The *bottom panels* show the residuals of the fit in number of times the statistical error bar. The coverage of the (u, v) plane is shown in the *upper right corner.*

And a Cen B

Fig. 4. Power law limb darkened disk model fit and residuals for α Cen B (same caption as Fig. 3).

Comparison of the residuals on α Cen A

CHARA array, visible wavelengths $- V^2$ functions

θ_{LD} =0.7mas, u=0.5 (ASPRO2 & LITpro tools JMMC)

U (m) - North -400 -350 -300 -250 -200 -150 -100 -50 0 50 100 150 200 250 300 400 550 400 500 350 450 400 300 $350₁$ 250 300 200 250 200 150 150 100 100 ះ
=
=
=
=
=
=
=
=
=
=
=
= 50 $V(MA)$ -50 50 -100 100 -150 -200 -150 -250 -200 -300 -250 -350 -400 300 -450 350 -500 400 -550 -500 -200 100 200 300 500 -400 -300 -100 $\overline{0}$ 400 U (MA)

 θ_{UD} = 0.6664 +-0.0004

 θ_{LD} = 0.6962 +-0.0003, u=0.522+-0.004

θ_{LD} =0.8mas, u=0.5 (ASPRO2 & LITpro tools JMMC)

 $U(m)$ - North $-400 -350 -300 -250 -200 -150 -100 -50$ 0 50 100 150 200 250 300 350 400 Day: 2019-02-25 - Source: 12:00:00.000 30:00:00.000 550 400 500 11 350 450 0.9 400 300 0.8 350 0.7 250 300 **VISAMP**
O. 200 250 200 150 150 0.3 $100 -$ 100 0.2 $\frac{3}{10}$ o $\frac{3}{10}$ o $\frac{3}{10}$
East 50 0.1 $\sqrt{(MN)}$ 0.0 -0.1 -50 -100 -100 -150 -200 -150 -250 200 -300 -250 -350 θ_{UD} = 0.7611 +-0.0002 -300 -400 -450 -350 -500 -400 -550 θ_{LD} = 0.8004 +-0.0002, u=0.504+-0.002 -500 -400 -300 -200 -100 100 200 300 400 500 $\mathbf 0$ U (MA)

,,,,,,,,,

Made by OlFitsExplorer/JMMC

First conclusions on LD measurements

For CHARA and visible: θ_{LD} =0.8mas is ok for a direct measure of LD For VLTI/PIONIER, the same simulation leads to θ_{LD} =4mas

So it's very clear that only very few stars could be directly measured in terms of LD diameter with the VLTI

Estimation of θ_{LD} for dwarfs

→ on CHARA, magV=4.2 for FV, magV=5.1 for GV, and magV=5.9 for KV

 \rightarrow ~100 F stars, 200 G stars, and 800 K stars.

Outline

1. Basic considerations about radius, diameter, Teff

- 2. Rapid introduction to the interferometric measurements
- 3. Could we measure the angular diameter of stars, and the LD?
- **4. What is the current situation?**
- 5. What are the perspectives? CHARA/SPICA project

The JMDC catalog $(\rightarrow$ Vizier, Duvert+2016)

- \sim 1500 stellar angular diameter measurements from different techniques (lunar occultation, intensity interferometry and optical interferometry).
- \cdot 11% (resp. 22%) of stars have their angular diameter measured with a precision better than 1% (resp. 2%). It corresponds to 159 and 323 measurements, respectively.

(Mv,V-K) diagram for JMDC+JSDC

But issues are remaining…

Indeed, the JSDC (Chelli+16) provides the angular diameter of 453000 stars with a median statistical uncertainties of 1.1% But, if we consider the 23 surface-brightness color relations (SBCR) available in the literature, we have inconsistencies

1.
$$
S_V = V - 5 \log \theta_{LD} = \sum a_k (V - K)^k
$$

\n2. $F_V = 4.2207 - 0.1 S_V = \alpha + \beta (V - K)$
\n3. $\log \theta_{LD} = d_1 + c_1 1(V - K) - 0.2V$
\n4. $\theta_{LD}(V = 0) = 10^{A+B(V-K)}$
\n5. $\Phi_V = \frac{\theta}{9.305 \times 10^{-5}} = \sum z_k (V - K)^k$

If we apply the 23 SBCR to an hypothetic star of mV=6; we obtain a dispersion of :

- $> 2\%$ if V-K=3
- \triangleright 9% if V-K=0 (early-type stars)
- \triangleright 9% if V-K=5 (late-type stars)

Conclusion: We are probably far from being able to estimate the angular diameter of stars with a 1% precision and accuracy.

Linked to mV and the angular diameter

Diagnosis and solution

- The 23 SBCR are based on various types of data and the methods used are also different.
- The subsets of data used are also very heterogeneous. Indeed, the 23 SBCR are based on samples of stars of 18 to 239 stars.
- There is also the problem of the V and K photometry. We need homogeneous data.
- And physically, as soon as the star is not a black body, we can have potentially a deviation from the SBCR. In other words stellar activity (spots, convection, winds & environment, rotation, and multiplicity) should be also taken into account.

With CHARA/SPICA:

- We can derive the angular diameter of 800 stars with a 1% precision (or better).
	- \triangleright This would double the number of stars for which we have an angular diameter.
	- \triangleright This would increase by a factor 5 the number of stars for which we have a 1% precision
	- \triangleright It would provide a unprecedented sample of stars with homogeneous angular diameters
- We can do images and/or characterize the stellar activity of ~200 stars

Outline

1. Basic considerations about radius, diameter, Teff

- 2. Rapid introduction to the interferometric measurements
- 3. Could we measure the angular diameter of stars, and the LD?
- 4. What is the current situation?

5. What are the perspectives? CHARA/SPICA project

The CHARA Array – Mount Wilson Observatory

Why is it crucial to derive the angular diameter of stars with a 1% precision and accuracy ?

Three astrophysical objectives of CHARA/SPICA:

1. Exoplanet Host Stars 2. Asteroseismology 3. SBCR: for the distance of the eclipsing binaries and PLATO

What means **large number** and **angular diameters** ?

• Large Number:

- In the past a few tens of objects only (PIONIER, CHARA)
- For the SBC relations, 5 LC, 7SP \rightarrow few hundreds of stars for a good sampling of the HR diagram and to improve the precision and accuracy.
- Almost 200 exoplanet host stars accessible to CHARA.

è **~1000 stars**

• Angular Diameters

Three objectives:

- 1. Exoplanet Host Stars
- 2. Asteroseismology
- 3. SBCR for distances of EB and PLATO

For these three objectives, stellar activity has to be taken into account:

CHARA/SPICA phase 1 (2021=>2024): 800* standards (diameters) + 200* actives (images)

Statistics of the CHARA sky

High level requirements Diameters:

- magR=8 (but at low $\sqrt{2}$)
- High precision, high efficiency (6T)
- R=300 (LR mode)

Imaging

- magR=5 (but at low $\sqrt{2}$)
- UV coverage (6T, +Supersynthesis)
- R=3000 (MR mode)

Main scientific requirements

\sim 1000 stars

- \rightarrow θ down to 0.2mas
- \rightarrow 300m and visible wavelengths is mandatory

Magnitude around 8 for the angular diameter measurements, around 4-5 for the surface imaging

SNR considerations \rightarrow long exposures are mandatory to reach the sensitivity

Limiting magnitude defined as $S/N=10$ per spectral channel in 10mn of integration

Group delay only (DIT=10ms)

		R=140 R=3000
$V^2 = 0.25$ 8.7		5.4
$V^2 = 0.01$	5.5 ₁	2.3

Phase delay tracking

These estimations use the same S/N calculator of FRIEND, validated on-sky

SNR model and sky calibration

SPICA-VIS: The FRIEND prototype

Limitations of VEGA + AO on CHARA

 \rightarrow opportunity for fibered interferometry in the visible \rightarrow Prototype for know-how and expertise in Nice

Lessons learned on:

- Visible fibres and injection with partial AO
- Birefringence correction
- EMCCD detector
- Data processing with fibered combiner: V^2 and $C\phi$

Martinod et al., 2018

26/02/2019 PLATO Limb Darkening Meeting #1 - D. Mourard 34

CHARA/SPICA Science Group Kick-off meeting (Jan. 2019) (All presentations are online: https://chara-spica-ws.sciencesconf.org/)

Objectives

